Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Public Health ; 10: 836328, 2022.
Article in English | MEDLINE | ID: covidwho-1809615

ABSTRACT

Real-world data are needed to establish SARS-CoV-2 rapid antigen testing (RAT) as an effective and reliable approach for SARS-CoV-2 screening. This study included 1,952,931 individuals who provided upper respiratory specimens during SARS-CoV-2 screening at CityMD urgent care locations in the New York metropolitan area from October 2020 to March 2021. Positive and negative results, as determined by the BD Veritor™ System for Rapid Detection of SARS-CoV-2 antigen (Veritor), were obtained for all individuals, with reflex reverse transcriptase-polymerase chain reaction (RT-PCR) testing performed on a case-by-case basis, per standard of care. Using verification bias adjustment, two alternative model assumptions were utilized for RAT results with missing reflex RT-PCR results. The worst antigen diagnostic performance estimates asserted that missing RT-PCR results would show a distribution similar to those RT-PCR results actually obtained, based on symptom category. The best antigen diagnostic performance estimates asserted that individuals without RT-PCR results had a clinical presentation consistent with RAT results, and, therefore, missing RT-PCR results would agree with RAT results. For patients with symptoms or high-risk exposure, 25.3% (n = 86,811/343,253) of RAT results were positive; vs. 3.4% (n = 53,046/1,559,733) positive for asymptomatic individuals without high-risk exposure. Reflex RT-PCR results were obtained from 46.3% (n = 158,836/343,253) and 13.8% (n = 215,708/1,559,733) of symptomatic and asymptomatic individuals, respectively. RT-PCR confirmed 94.4% (4,265/4,518) of positive and 90.6% (139,759/154,318) of negative RAT results in symptomatic individuals; and confirmed 83.4% (6,693/8,024) of positive and 95.3% (197,955/207,684) of negative RAT results in asymptomatic individuals. Applied assumptions for missing reflex RT-PCR results led to worst performance sensitivity estimates of 77.2 and 38.5% in the symptomatic and asymptomatic populations, respectively; assumptions for best performance estimates led to sensitivity values of 85.6 and 84.2%, respectively. Specificity values, regardless of assumptions or symptom category, ranged from 97.9-99.9%. At 10% SARS-CoV-2 prevalence, RAT positive predictive value was 86.9 and 99.0% for worst and best performance estimates across the total population, respectively; negative predictive values were >95% regardless of the applied assumption. Veritor test performance was consistent with that listed in the manufacturer instructions for use for symptomatic individuals. Real-world evidence should be gathered on RATs to support their efficacy as SARS-CoV-2 persists.


Subject(s)
COVID-19 Serological Testing , COVID-19 , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Humans , SARS-CoV-2 , Sensitivity and Specificity
2.
Microbiol Spectr ; 10(2): e0180721, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1784772

ABSTRACT

Differential diagnosis of COVID-19 and/or influenza (flu) at point of care is critical for efficient patient management and treatment of both these diseases. The study presented here characterizes the BD Veritor System for Rapid Detection of SARS-CoV-2 and Flu A+B ("Veritor SARS-CoV-2/Flu") triplex assay. The performance for SARS-CoV-2 detection was determined using 298 specimens from patients reporting COVID-19 symptoms within 7 days from symptom onset (DSO) in comparison with the Lyra SARS-CoV-2 RT-PCR (reverse transcriptase PCR) assay ("Lyra SARS-CoV-2") as the reference. The performance for flu A and flu B detection was determined using 75 influenza-positive and 40 influenza-negative retrospective specimens in comparison with the previously FDA-cleared BD Veritor System for Rapid Detection of Flu A+B assay ("Veritor Flu") as the reference. The Veritor SARS-CoV-2/Flu assay met the FDA EUA acceptance criteria (86.7%; 95% confidence interval [95% CI]: 75.8 to 93.1) for SARS-CoV-2 testing compared to Lyra SARS-CoV-2. The Veritor SARS-CoV-2/Flu assay also demonstrated 100% agreement with the Veritor Flu for Flu A+B assay. For flu A detection, the lower bound of the 95% CI was 91.2%; for flu B detection, the lower bound was 90.0%. The dual detection capability of Veritor SARS-CoV-2/Flu for the etiologic agents causing COVID-19 and flu will allow efficient differentiation between the two illnesses, inform disease management, and facilitate optimal treatment. IMPORTANCE COVID-19 and flu are two respiratory illnesses which share similar clinical symptoms. The BD Veritor SARS-CoV-2/Flu assay has high sensitivity and specificity for detecting the SARS-CoV-2 and influenza A/B, the two etiologic agents causing COVID-19 and flu, respectively. This dual detection capability is critical when overlap occurs between the COVID-19 pandemic and the flu season. This triplex assay will allow efficient differentiation between the two respiratory illnesses and support a point-of-care physician diagnosis to facilitate the proper treatment and disease management for patients exhibiting overlapping symptoms.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/diagnosis , COVID-19 Testing , Humans , Influenza, Human/diagnosis , Pandemics , Point-of-Care Systems , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
3.
Front Microbiol ; 12: 714242, 2021.
Article in English | MEDLINE | ID: covidwho-1485072

ABSTRACT

Tests that detect the presence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigen in clinical specimens from the upper respiratory tract can provide a rapid means of coronavirus disease 2019 (COVID-19) diagnosis and help identify individuals who may be infectious and should isolate to prevent SARS-CoV-2 transmission. This systematic review assesses the diagnostic accuracy of SARS-CoV-2 antigen detection in COVID-19 symptomatic and asymptomatic individuals compared to quantitative reverse transcription polymerase chain reaction (RT-qPCR) and summarizes antigen test sensitivity using meta-regression. In total, 83 studies were included that compared SARS-CoV-2 rapid antigen-based lateral flow testing (RALFT) to RT-qPCR for SARS-CoV-2. Generally, the quality of the evaluated studies was inconsistent; nevertheless, the overall sensitivity for RALFT was determined to be 75.0% (95% confidence interval: 71.0-78.0). Additionally, RALFT sensitivity was found to be higher for symptomatic vs. asymptomatic individuals and was higher for a symptomatic population within 7 days from symptom onset compared to a population with extended days of symptoms. Viral load was found to be the most important factor for determining SARS-CoV-2 antigen test sensitivity. Other design factors, such as specimen storage and anatomical collection type, also affect the performance of RALFT. RALFT and RT-qPCR testing both achieve high sensitivity when compared to SARS-CoV-2 viral culture.

4.
J Clin Microbiol ; 59(12): e0101921, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1443351

ABSTRACT

Nucleic acid amplification testing (NAAT) for SARS-CoV-2 is the standard approach for confirming COVID-19 cases. This study compared results between two emergency use authorization (EUA) NAATs, with two additional EUA NAATs utilized for discrepant testing. The limits of detection (LOD) for the BD SARS-CoV-2 reagents for the BD MAX system (MAX SARS-CoV-2 assay), the bioMérieux BioFire respiratory panel 2.1 (BioFire SARS-CoV-2 assay), the Roche cobas SARS-CoV-2 assay (cobas SARS-CoV-2 assay), and the Hologic Aptima SARS-CoV-2 assay Panther (Aptima SARS-CoV-2 assay) NAAT systems were determined using a total of 84 contrived nasopharyngeal specimens with 7 target levels for each comparator. The positive and negative percent agreement (PPA and NPA, respectively) of the MAX SARS-CoV-2 assay, compared to the Aptima SARS-CoV-2 assay, was evaluated in a postmarket clinical study utilizing 708 nasopharyngeal specimens collected from suspected COVID-19 cases. Discordant testing was achieved using the cobas and BioFire SARS-CoV-2 NAATs. In this study, the measured LOD for the MAX SARS-CoV-2 assay (251 copies/ml; 95% confidence interval [CI], 186 to 427) was comparable to the cobas SARS-CoV-2 assay (298 copies/ml; 95% CI, 225 to 509) and the BioFire SARS-CoV-2 assay (302 copies/ml; 95% CI, 219 to 565); the Aptima SARS-CoV-2 assay had an LOD of 612 copies/ml (95% CI, 474 to 918). The MAX SARS-CoV-2 assay had a PPA of 100% (95% CI, 97.3% to 100.0%) and an NPA of 96.7% (95% CI, 94.9% to 97.9%) compared to the Aptima SARS-CoV-2 assay. The clinical performance of the MAX SARS-CoV-2 assay agreed with another sensitive EUA assay.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Indicators and Reagents , Molecular Diagnostic Techniques , Nasopharynx , Sensitivity and Specificity
5.
J Clin Virol ; 143: 104946, 2021 10.
Article in English | MEDLINE | ID: covidwho-1433478

ABSTRACT

BACKGROUND: COVID-19 and influenza (flu) share similar clinical symptoms. Therefore, differential detection of these viruses during the respiratory virus season will be an important component for proper patient triage, management, and treatment. OBJECTIVES: Establish the diagnostic performance related to SARS-CoV-2 and Flu A/B detection for the BD SARS-CoV-2/Flu for BD MAX™ System ("MAX SARS-CoV-2/Flu") multiplex assay. MATERIALS AND METHODS: Two hundred and thirty-five (235) retrospective nasopharyngeal specimens were obtained from external vendors. The BD BioGx SARS-CoV-2 Reagents for BD MAX™ System ("BioGx SARS-CoV-2″) and the Cepheid Xpert® Xpress Flu/RSV ("Xpert Flu/RSV") were utilized as reference methods. RESULTS: By reference methods, 52 specimens were SARS-CoV-2-positive, 59 were Flu A-positive, and 60 were Flu B-positive. MAX SARS-CoV-2/Flu had positive percent agreement (PPA) and negative percent agreement (NPA) values for SARS-CoV-2 detection of 96.2% ([95%CI]:87.0-98.9) and 100% [95%CI:88.7-100], respectively; PPA values for Flu A and Flu B of 100% [95%CI:93.9-100] and 98.3% [95%CI:91.1-99.7], respectively, and NPA values for Flu A and Flu B of 98.9% [95%CI:94.0-99.8] and 100% [95%CI:95.9-100], respectively. CONCLUSIONS: The MAX SARS-CoV-2/Flu assay met FDA-EUA performance criteria for SARS-CoV-2 (≥95% for PPA and NPA) and FDA clearance criteria for Flu A/B (PPA ≥90%; lower bound of the 95%CI ≥80% and NPA ≥95%; lower bound of the 95%CI ≥90%).


Subject(s)
COVID-19 , Influenza, Human , Humans , Influenza, Human/diagnosis , Molecular Diagnostic Techniques , Nasopharynx , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
6.
PLoS One ; 16(9): e0253407, 2021.
Article in English | MEDLINE | ID: covidwho-1398926

ABSTRACT

Surveillance testing for infectious disease is an important tool to combat disease transmission at the population level. During the SARS-CoV-2 pandemic, RT-PCR tests have been considered the gold standard due to their high sensitivity and specificity. However, RT-PCR tests for SARS-CoV-2 have been shown to return positive results when performed to individuals who are past the infectious stage of the disease. Meanwhile, antigen-based tests are often treated as a less accurate substitute for RT-PCR, however, new evidence suggests they may better reflect infectiousness. Consequently, the two test types may each be most optimally deployed in different settings. Here, we present an epidemiological model with surveillance testing and coordinated isolation in two congregate living settings (a nursing home and a university dormitory system) that considers test metrics with respect to viral culture, a proxy for infectiousness. Simulations show that antigen-based surveillance testing coupled with isolation greatly reduces disease burden and carries a lower economic cost than RT-PCR-based strategies. Antigen and RT-PCR tests perform different functions toward the goal of reducing infectious disease burden and should be used accordingly.


Subject(s)
Antigens, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19/virology , False Negative Reactions , False Positive Reactions , Humans , Immunologic Surveillance/immunology , Nursing Homes , Pandemics/prevention & control , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity , Universities
7.
Clin Infect Dis ; 73(9): e2861-e2866, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1043631

ABSTRACT

BACKGROUND: Individuals can test positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by molecular assays following the resolution of their clinical disease. Recent studies indicate that SARS-CoV-2 antigen-based tests are likely to be positive early in the disease course, when there is an increased likelihood of high levels of infectious virus. METHODS: Upper respiratory specimens from 251 participants with coronavirus disease 2019 symptoms (≤7 days from symptom onset) were prospectively collected and tested with a lateral flow antigen test and a real-time polymerase chain reaction (rt-PCR) assay for detection of SARS-CoV-2. Specimens from a subset of the study specimens were utilized to determine the presence of infectious virus in the VeroE6TMPRSS2 cell culture model. RESULTS: The antigen test demonstrated a higher positive predictive value (90%) than rt-PCR (70%) when compared to culture-positive results. The positive percentage agreement for detection of infectious virus for the antigen test was similar to rt-PCR when compared to culture results. CONCLUSIONS: The correlation between SARS-CoV-2 antigen and SARS-CoV-2 culture positivity represents a significant advancement in determining the risk for potential transmissibility beyond that which can be achieved by detection of SARS-CoV-2 genomic RNA. SARS-CoV-2 antigen testing can facilitate low-cost, scalable, and rapid time-to-result, while providing good risk determination of those who are likely harboring infectious virus, compared to rt-PCR.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
8.
Elife ; 92020 12 17.
Article in English | MEDLINE | ID: covidwho-1011747

ABSTRACT

Here, we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.


Subject(s)
Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Lymphocyte Activation , Pneumonia, Ventilator-Associated/drug therapy , Pseudomonas Infections/drug therapy , SARS-CoV-2 , T-Lymphocytes/immunology , Anti-Bacterial Agents/pharmacology , COVID-19/immunology , COVID-19/therapy , Drug Resistance, Multiple, Bacterial , Humans , Lung/microbiology , Male , Meropenem/pharmacology , Meropenem/therapeutic use , Metagenomics , Middle Aged , Piperacillin, Tazobactam Drug Combination/pharmacology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia, Ventilator-Associated/diagnostic imaging , Pneumonia, Ventilator-Associated/etiology , Pseudomonas Infections/diagnostic imaging , Pseudomonas Infections/etiology , Pseudomonas aeruginosa/isolation & purification , Recurrence , Respiration, Artificial
9.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: covidwho-991754

ABSTRACT

The clinical performance of the BD Veritor System for Rapid Detection of SARS-CoV-2 nucleocapsid antigen (Veritor), a chromatographic immunoassay used for SARS-CoV-2 point-of-care testing, was evaluated using nasal specimens from individuals with COVID-19 symptoms. Two studies were completed to determine clinical performance. In the first study, nasal specimens and either nasopharyngeal or oropharyngeal specimens from 251 participants with COVID-19 symptoms (≤7 days from symptom onset [DSO], ≥18 years of age) were utilized to compare Veritor with the Lyra SARS-CoV-2 PCR assay (Lyra). In the second study, nasal specimens from 361 participants with COVID-19 symptoms (≤5 DSO, ≥18 years of age) were utilized to compare performance of Veritor to that of the Sofia 2 SARS Antigen FIA test (Sofia 2). The positive, negative, and overall percent agreement (PPA, NPA, and OPA, respectively) were the primary outcomes. In study 1, the PPA for Veritor, compared to Lyra, ranged from 81.8 to 87.5% across the 0 to 1 and 0 to 6 DSO ranges. In study 2, Veritor had PPA, NPA, and OPA values of 97.4, 98.1, and 98.1%, respectively, with Sofia 2. Discordant analysis showed one Lyra positive missed by Veritor and five Lyra positives missed by Sofia 2; one Veritor positive result was negative by Lyra. Veritor met FDA emergency use authorization (EUA) acceptance criteria for SARS-CoV-2 antigen testing for the 0 to 5 and 0 to 6 DSO ranges (PPA values of 83.9% and 82.4%, respectively). Veritor and Sofia 2 showed a high degree of agreement for SARS-CoV-2 detection. The Veritor test allows for more rapid COVID-19 testing utilizing easy-to-collect nasal swabs but demonstrated <100% PPA compared to PCR.


Subject(s)
Antigens, Viral/analysis , COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Spike Glycoprotein, Coronavirus/analysis , Adult , Female , Humans , Immunoassay/methods , Male , Middle Aged , Nasopharynx/virology , Oropharynx/virology , Point-of-Care Testing , Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL